APEX MICROTECHNOLOGY CORPORATION
RELIABILITY PREDICTION
PB58

by

Granger Scofield

Date of prediction: 15-Mar-01

This reliability prediction is based on MIL-HDBK-217F, December 2, 1991 including Notice 2, February 28, 1995.

Conditions of this prediction are as follows:

Hybrid quality level is Commercial
Environment is Gf Ground, Fixed
Case temperature is 40 C
Internal Power Dissipation = 22 W
Supply voltage is +/- 132 V
An AC signal is applied.
Product introduction date: 01-Nov-89

The results of this prediction are:

11 failures per million hours; or,
MTBF=90.8 thousand hours.
Transistors, Low Frequency, Bipolar:

\[L_p = L_b \cdot \pi T \cdot \pi R \cdot \pi S \]

<table>
<thead>
<tr>
<th>Transistor</th>
<th>Volts</th>
<th>Watts</th>
<th>Tj (°C)</th>
<th>K/W</th>
<th>Usage</th>
<th>Vstress</th>
<th>Vpwr</th>
<th>Ic (A)</th>
<th>Vs (A)</th>
<th>Power (W)</th>
<th>Lb, πT, πR, πS, Nc, Tj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q5</td>
<td>40</td>
<td>1.2</td>
<td>175</td>
<td>125</td>
<td>2.5</td>
<td>0.65</td>
<td>1E-05</td>
<td>0.0625</td>
<td>6.5E-06</td>
<td>40.0008</td>
<td></td>
</tr>
<tr>
<td>Q1</td>
<td>40</td>
<td>1.2</td>
<td>175</td>
<td>125</td>
<td>7.1</td>
<td>4.7</td>
<td>1E-05</td>
<td>0.1775</td>
<td>4.7E-05</td>
<td>40.0059</td>
<td></td>
</tr>
<tr>
<td>Q7</td>
<td>40</td>
<td>1.2</td>
<td>175</td>
<td>125</td>
<td>2.5</td>
<td>0.65</td>
<td>1E-05</td>
<td>0.0625</td>
<td>6.5E-06</td>
<td>40.0008</td>
<td></td>
</tr>
<tr>
<td>Q10</td>
<td>350</td>
<td>5</td>
<td>200</td>
<td>35</td>
<td>259</td>
<td>127.5</td>
<td>0.005</td>
<td>0.74</td>
<td>0.6375</td>
<td>62.3125</td>
<td></td>
</tr>
<tr>
<td>Q4</td>
<td>300</td>
<td>20</td>
<td>150</td>
<td>6.25</td>
<td>144</td>
<td>127.3</td>
<td>0.001</td>
<td>0.48</td>
<td>0.1273</td>
<td>40.7956</td>
<td></td>
</tr>
<tr>
<td>Q9</td>
<td>300</td>
<td>20</td>
<td>150</td>
<td>6.25</td>
<td>145</td>
<td>129.5</td>
<td>0.0015</td>
<td>0.4833</td>
<td>0.19425</td>
<td>41.2141</td>
<td></td>
</tr>
</tbody>
</table>

Transistors, Low Frequency, Si JFET:

\[L_p = L_b \cdot \pi T \]

<table>
<thead>
<tr>
<th>Transistor</th>
<th>Volts</th>
<th>Watts</th>
<th>Tj (°C)</th>
<th>K/W</th>
<th>Usage</th>
<th>Vpwr</th>
<th>Id (A)</th>
<th>Power (W)</th>
<th>Lb, πT, Nc, Tj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q11</td>
<td>300</td>
<td>3</td>
<td>150</td>
<td>6.25</td>
<td>258</td>
<td>0.001</td>
<td>0.258</td>
<td>41.6667</td>
<td>1.671607</td>
</tr>
<tr>
<td>Q3,8</td>
<td>350</td>
<td>115.4</td>
<td>175</td>
<td>1.29983</td>
<td>Fraction Output Pwr = 1</td>
<td>22</td>
<td>68.5962</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Transistors, Low Frequency, Si MOSFET:

\[L_p = L_b \cdot \pi T \]

<table>
<thead>
<tr>
<th>Transistor</th>
<th>Volts</th>
<th>Watts</th>
<th>Tj (°C)</th>
<th>K/W</th>
<th>Usage</th>
<th>Vpwr</th>
<th>Power (W)</th>
<th>Lb, πT, Nc, Tj</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q11</td>
<td>300</td>
<td>3</td>
<td>150</td>
<td>6.25</td>
<td>258</td>
<td>0.001</td>
<td>0.258</td>
<td>41.6667</td>
</tr>
<tr>
<td>Q3,8</td>
<td>350</td>
<td>115.4</td>
<td>175</td>
<td>1.29983</td>
<td>Fraction Output Pwr = 1</td>
<td>22</td>
<td>68.5962</td>
<td></td>
</tr>
</tbody>
</table>
Q6
Volts = 450 Watts = 4 Tj = 150 K/W = 31.25
Usage: Vpwr = 4.5 Id = 0.0037 Power = 0.01652
Lb PIT Nc Tj = 40.5161
0.012 1.376709 1 0.016521

Q2
Volts = 450 Watts = 4 Tj = 150 K/W = 31.25
Usage: Vpwr = 128.5 Id = 0.005 Power = 0.6425
Lb PIT Nc Tj = 60.0781
0.012 1.974483 2 0.047388

Capacitors, ceramic general purpose type CK:
Lp = Lb * PIT * PIC * PV
Lb = 0.00099

C1
Volts = 50 pF = 68
Usage: Vstress = 1.5 S = 0.03
Lb PIT PIC PI V Nc
0.00099 1.92167 0.226 1.0001 1 0.000431

C2
Volts = 50 pF = 15000
Usage: Vstress = 4.5 S = 0.09
Lb PIT PIC PI V Nc
0.00099 1.92167 0.368 1.0034 1 0.000702

Diodes, Low Frequency:
Lp = Lb * PIT * PIS * PIC

Diodes, Zener, Lb = 0.002
D1
Volts = 3.1 Watts = 2.5 Tj = 175 K/W = 60
Usage: Ic = 0.001 Power = 0.0031
Lb PIT PIS PIC Nc Tj = 40.186
0.002 1.367828 1 2 1 0.005471

Sum of all components 0.135585

Hybrid microcircuit:
Lp=sumLc*(1+.2*PJE) * PIF * PIQ * PiL
0.135585 1.4 5.8 10 1

Total failures per million hours = 11.0095
Mean time between failures = 90830.7