

Radiation Tolerant Power Operational Amplifier

FEATURES

- High Power Bandwidth 350 kHz
- High Slew Rate 20V/μs
- Fast Settling Time 600ns
- Low Internal Losses 1.2V at 2A
- High Output Current ±5A Peak
- Single Event Effect (SEE) Testing 62.5 MeV.cm²/mg
- Total Ionizing Dose (TID) Testing 50krad (Si)

- Motor, Valve, Actuator, and Gimbal Control
- Magnetic Deflection Circuits up to 5A
- Fine steering & deformable mirrors
- Voice coils & solenoids

DESCRIPTION

The PAO2R is a wide-band, high output current operational amplifiers designed to drive resistive, inductive and capacitive loads. Their complementary "collector output" stage can swing close to the supply rails and is protected against inductive kickback. For optimum linearity, the output stage is biased for class A/B operation. The safe operating area (SOA) can be observed for all operating conditions by selection of user programmable, current limiting resistors (down to 10mA). The amplifier is internally compensated but are not recommended for use as unity gain followers. For continuous operation under load, mounting on a heat-sink of proper rating is recommended.

These hybrid integrated circuits utilize thick film (cermet) resistors, ceramic capacitors and semiconductor chips to maximize reliability, minimize size and give top performance. Ultrasonically bonded aluminum wires provide reliable interconnections at all operating temperatures. The 8-pin TO-3 package is hermetically sealed and electrically isolated. Isolation washers are not recommended. The use of compressible thermal washers and/or improper mounting torque will void the product warranty. Please see Application Note 1 "General Operating Considerations."

APEX RAD TOLERANT OVERVIEW

As an Apex radiation tolerant device, PA02R has been tested to "M/883" compliance. Additional testing for radiation tolerance includes:

- Particle Impact Noise Detection (PIND) Testing
- Single Event Effect (SEE) Testing: 62.5 MeV.cm²/mg, Xenon heavy ion
- Enhanced Low Dose Rate Sensitivity (ELDRS) Testing: Dosage: 50 krad (Si)
- High-Dosage Radiation (HDR) Testing: Dosage: 50 krad (Si)

Apex radiation tolerant devices are considered "Class-H", or radiation-tolerant. These devices do not satisfy the requirements for "Class-K" or radiation-hardened devices.

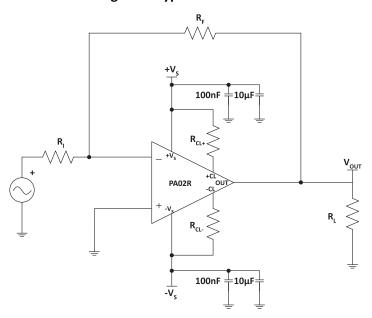
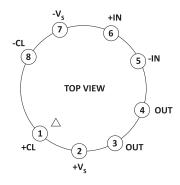


Figure 1: Equivalent Schematic

TYPICAL CONNECTIONS


Figure 2: Typical Connections

PINOUT AND DESCRIPTION TABLE

Figure 3: External Connections

Pin Number	Name	Description
1	+CL	Connect to the sourcing current limit resistor, and then the $+ V_S$ pin. Power supply current flows into this pin through R_{CL+} .
2	+V _S	The positive supply rail.
3, 4	OUT	The output. Connect this pin to load and to the feedback resistors. (Pins 3 and 4 are internally connected).
5	-IN	The inverting input.
6	+IN	The non-inverting input.
7	-V _S	The negative supply rail.
8	-CL	Connect to the sinking current limit resistor, and then the -V $_{\rm S}$ pin. Power supply current flows out of this pin through R $_{\rm CL}$

SPECIFICATIONS

The power supply voltage for all specifications is the TYP rating unless otherwise noted as a test condition. Full temperature specifications are guaranteed but not 100% tested.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Units
Supply Voltage, total	+V _s to -V _s		38	V
Output Current, within SOA	I _{OUT}		5	Α
Power Dissipation, internal ¹	P _D		48	W
Input Voltage, differential	V _{IN (Diff)}	-30	30	V
Input Voltage, common mode	V _{CM}	-V _S + 2V	+V _S - 2V	V
Temperature, pin solder, 10s max.			350	°C
Temperature, junction ¹	T _J		150	°C
Temperature Range, storage		-65	+150	°C
Operating Temperature Range, case	T _C	-55	+125	°C

^{1.} Long term operation at the maximum junction temperature will result in reduced product life. Derate internal power dissipation to achieve high MTTF.

The internal substrate contains beryllia (BeO). Do not break the seal. If accidentally broken, do not crush, machine, or subject to temperatures in excess of 850°C to avoid generating toxic fumes.

INPUT

Davamatav	Test	PA02				PA02R		Units
Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Units
Offset Voltage, initial	T _C = 25°C		±5	±10		±1		mV
Offset Voltage vs. temperature	Full temp range		±10	±50		*		μV/°C
Offset Voltage vs. supply	T _C = 25°C		±10			*		μV/V
Offset Voltage vs. power ²	T _C = 25°C		±6			*		μV/W
Bias Current, initial ²	T _C = 25°C		50	200		102		рА
Bias Current vs. temperature	T _C = 85°C			200			*	pA/°C
Bias Current vs. supply	T _C = 25°C		0.01			*		pA/V
Offset Current, initial ²	T _C = 25°C		25	100		100		рА
Offset Current vs. temperature	T _C = 85°C			100			*	pA/°C
Input Impedance, DC	T _C = 25°C		1000			*		GΩ
Input Capacitance	T _C = 25°C		3			*		pF
Common Mode Voltage Range ¹ , Pos.	Full temp range	+V _S -6	+V _S -3		*	*		V
Common Mode Voltage Range ¹ , Neg.	Full temp range	-V _S +6	-V _S +5		*	*		V
Common Mode Rejection, DC ²	Full temp range	70	100			106		dB

- 1. Exceeding CMV range can cause the output to latch.
- 2. Typical values are based on a sample of PA02Rs that underwent radiation testing, reflecting the average of the biased and unbiased HDR data at 50krad. These values provide a general overview of performance; however, the full PA02R Radiation Report should be consulted prior to flight.

GAIN

Parameter	Test	PA02			PA02R			Units
raiailletei	Conditions Min		Тур	Max	Min	Тур	Max	Offics
Open Loop Gain @ 10 Hz	T_C = 25°C, 1 kΩ load		103			*		dB
Open Loop Gain @ 10 Hz ¹	Full temp range, 10 kΩ load	86	100			112		dB
Gain Bandwidth Product @ 1 MHz	T_C = 25°C, 10 Ω load		4.5			*		MHz
Power Bandwidth	T_C = 25°C, 10 Ω load		350			*		kHz
Phase Margin	Full temp range, $10~\Omega$ load		30			*		۰

^{1.} Typical values are based on a sample of PAO2Rs that underwent radiation testing, reflecting the average of the biased and unbiased HDR data at 50krad. These values provide a general overview of performance; however, the full PAO2R Radiation Report should be consulted prior to flight.

OUTPUT

Parameter	Test		PA02			PA02R		Units
Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Offics
Voltage Swing ^{1,2}	T_C =25°C, I_{OUT} = 5A, R_{CL} = 0.08 Ω	±V _S -4	±V _S -3		*	±V _S -0.6		V
Voltage Swing ¹	Full temp range, I _{OUT} = 2A	±V _S -2	±V _S -1.2		*	*		V
Current, peak	T _C = 25°C	5			*			Α
Settling Time to 0.1%	T _C =25°C, 2V step		0.6			*		μs
Slew Rate ²	T _C = 25°C	13	20			21		V/µs
Capacitive Load	Full temp range, A _V > 10		SOA			*		
Harmonic Distortion	P_{O} =0.5W, F = 1 kHz, R _L = 10 Ω		0.004			*		V
Small Signal rise/fall time	$R_L = 10 \Omega, A_V = 1$		100			*		ns
Small Signal overshoot	$R_L = 10 \Omega, A_V = 1$		10			*		%

- 1. $+V_S$ and $-V_S$ denote the positive and negative supply rail respectively. Total V_S is measured from $+V_S$ to $-V_S$.
- 2. Typical values are based on a sample of PAO2Rs that underwent radiation testing, reflecting the average of the biased and unbiased HDR data at 50krad. These values provide a general overview of performance; however, the full PAO2R Radiation Report should be consulted prior to flight.

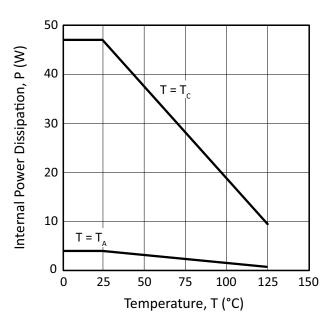
POWER SUPPLY

Parameter	Test		PA02			PA02R		Units	
raiailletei	Conditions	Min	Тур	Max	Min	Тур	Max		
Voltage	Full temp range	±7	±15	±19	*	*	*	V	
Current, Quiescent ¹	T _C = 25°C		27	40		22	*	mA	

1. Typical values are based on a sample of PAO2Rs that underwent radiation testing, reflecting the average of the biased and unbiased HDR data at 50krad. These values provide a general overview of performance; however, the full PAO2R Radiation Report should be consulted prior to flight.

THERMAL

Parameter	Test	PA02			PA02R			Units
raiameter	Conditions	Min	Тур	Max	Min	Тур	Max	Omis
Resistance, AC junction to case ¹	F > 60 Hz		1.9	2.1		*	*	°C/W
Resistance, DC junction to case	F < 60 Hz		2.4	2.6		*	*	°C/W
Resistance, junction to air			30			*		°C/W
Temperature Range, case	Meets full range specifications	-25		+85	-55		+125	°C


^{1.} Rating applies if the output current alternates between both output transistors at a rate faster than 60 Hz.

Note: * The specifications were not measured under radiation. In a non-radiation environment, the PA02 parameters reflect the behavior of the PA02R. However, in a radiation environment, the PA02R specifications marked with an asterisk (excluding thermal specifications) may deviate from the PA02 specifications.

TYPICAL PERFORMANCE GRAPHS (PA02)

Figure 4: Power Derating

Figure 5: Output Voltage Swing

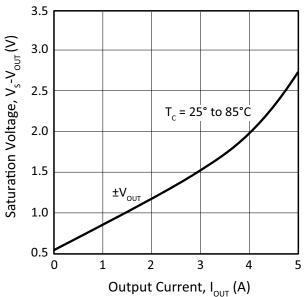


Figure 6: Small Signal Response

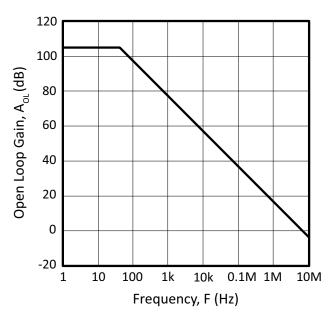
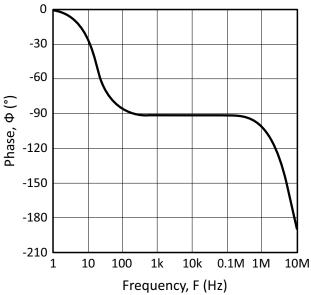



Figure 7: Phase Response

Figure 8: Current Limit

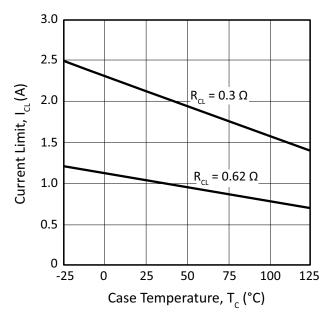


Figure 10: Bias Current

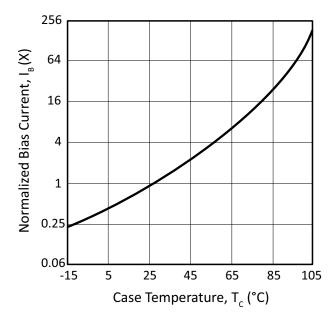
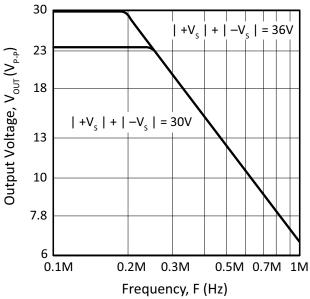



Figure 9: Power Response

Figure 11: Common Mode Rejection

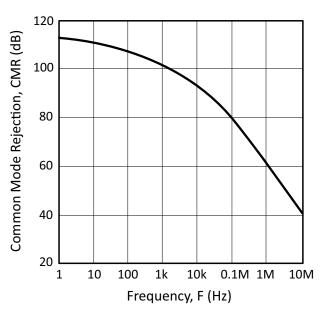


Figure 12: Power Supply Rejection

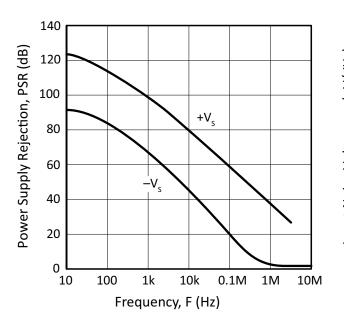
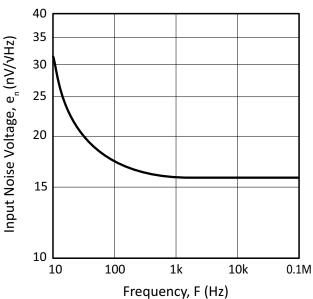



Figure 13: Input Noise

Figure 14: Quiescent Current

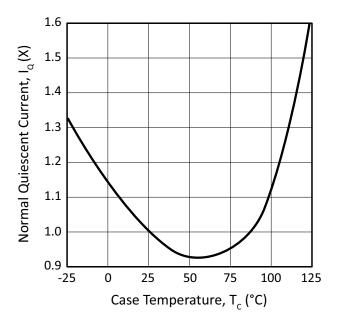
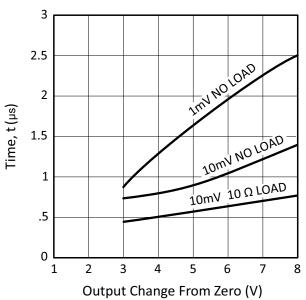



Figure 15: Settling Time

Figure 16: Harmonic Distortion

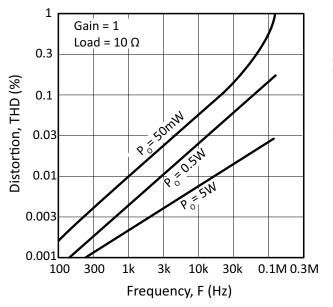


Figure 18: Pulse Response

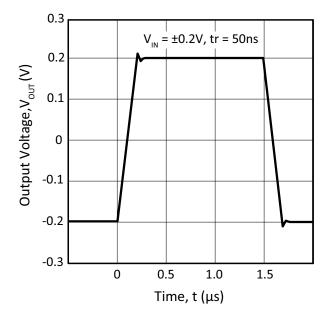
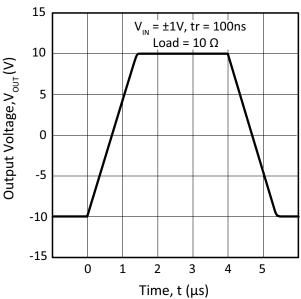
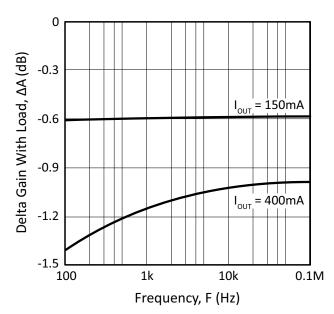




Figure 17: Pulse Response

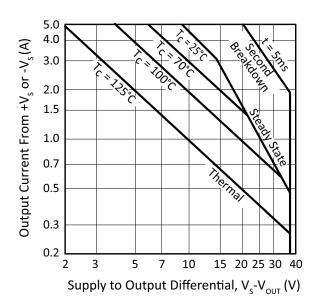
Figure 19: Loading Effects

SAFE OPERATING AREA (SOA)

The SOA curves combine the effect of all limits for this Power Op Amp. For a given application, the direction and magnitude of the output current should be calculated or measured and checked against the SOA curves. This is simple for resistive loads but more complex for reactive and EMF generating loads. The following guidelines may save extensive analytical efforts:

1. Under transient conditions, capacitive and dynamic* loads up to the following maximums are safe:

±V _S	CAPACIT	IVE LOAD	INDUCTIVE LOAD			
± v s	I _{CL} = 2A	I _{CL} = 5A	I _{CL} = 2A	I _{CL} = 5A		
18V	2 mF	0.7 mF	0.2 H	10 mH		
15V	10 mF	2.2 mF	0.7 H	25 mH		
10V	25 mF	10 mF	5 H	50 mH		


^{*} If the inductive load is driven near steady state conditions, allowing the output voltage to drop more than 8V below the supply rail with I_{CL} = 5A, or 17V below the supply rail with I_{CL} = 2A while the amplifier is current limiting, the inductor should be capacitively coupled or the current limit must be lowered to meet SOA criteria.

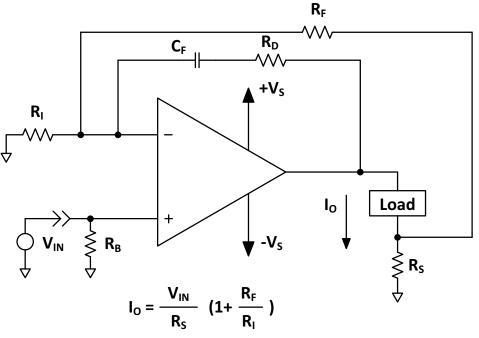
2. The amplifier can handle any EMF generating or reactive load and short circuits to the supply rails or shorts to common if the current limits are set as follows at $T_C = 85$ °C.

±V _S	Short to ±V _S C, L, or EMF Load	Short to Common
18V	0.5A	1.7A
15V	0.7A	2.8A
10V	1.6A	4.2A

These simplified limits may be exceeded with further analysis using the operating conditions for a specific application.

Figure 20: SOA

GENERAL


Please read Application Note 1 "General Operating Considerations" which covers stability, supplies, heat sinking, mounting, current limit, SOA interpretation, and specification interpretation. Visit www.apexanalog.com for Apex Microtechnology's complete Application Notes library, Technical Seminar Workbook, and Evaluation Kits.

TYPICAL APPLICATION

VOLTAGE CONTROLLED CURRENT SOURCE

Using the PAO2R as a voltage controlled current source (VCCS) can be useful in wide array of applications. Precisely controlling the motor torque is simplified since torque is a direct function of current in the motor. The circuit in figure twenty-one allows for precise control of a solenoid or voice coil. The output current of the VCCS is a function of output voltage (determined by Vin, RF, & RI) and RS. The figure below utilized the PAO2R in a non-inverting configuration. In many VCCS applications Cf and Rd are required to stabilize the op amp. More information regarding VCCS can be found in Apex Application Note 13: Voltage to Current Conversion.

Figure 21: Voltage Controlled Current Source

For: $R_S \ll R_F$ or R_I

CURRENT LIMIT

Proper operation requires the use of two current limit resistors, connected as shown in the external connection diagram. The minimum value for R_{CL} is 0.12 Ω , however for optimum reliability it should be set as high as possible.

$$R_{CL}(\Omega) = \frac{0.65 V}{I_{CL}(A)}$$

Where:

I_{CL} is the current limit in Amperes.

R_{CL} is the current limit resistor value in Ohms.

Refer to Application Note 1 "General Operating Considerations" section of the handbook for current limit adjust details.

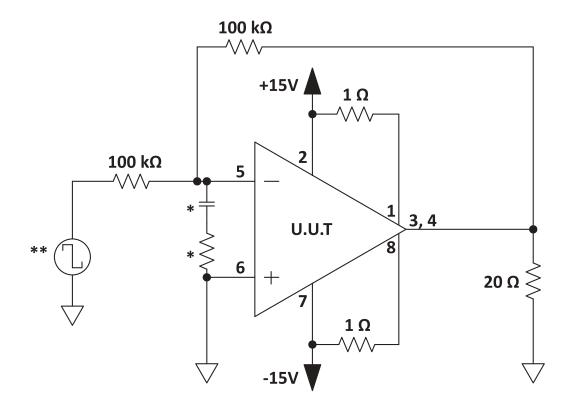
DEVICE MOUNTING

The case (mounting flange) is electrically isolated and should be mounted directly to a heatsink with thermal compound. Screws with Belville spring washers are recommended to maintain positive clamping pressure on heatsink mounting surfaces. Long periods of thermal cycling can loosen mounting screws and increase thermal resistance.

Since the case is electrically isolated (floating) with respect to the internal circuits it is recommended to connect it to common or other convenient AC ground potential.

TABLE 4 GROUP A INSPECTION

SG	Parameter	Symbol	Temp.	Power	Test Conditions	Min	Max	Units
1	Quiescent Current	ΙQ	25°C	±15V	V _{IN} =0, A _V =100, R _{CL} =0.2 Ω		40	mA
1	Input Offset Voltage	V_{OS}	25°C	±15V	V _{IN} = 0, A _V = 100		10	mV
1	Input Offset Voltage	V_{OS}	25°C	±7V	V _{IN} = 0, A _V = 100		11.6	mV
1	Input Offset Voltage	V_{OS}	25°C	±19V	V _{IN} = 0, A _V = 100		10.8	mV
1	Input Bias Current, +IN	+I _B	25°C	±15V	V _{IN} = 0		200	pA
1	Input Bias Current, –IN	$-I_B$	25°C	±15V	V _{IN} = 0		200	pA
1	Input Offset Current	I _{OS}	25°C	±15V	V _{IN} = 0		100	pA
3	Quiescent Current	I_{Q}	–55°C	±15V	V _{IN} =0, A _V =100, R _{CL} =0.2 Ω		60	mA
3	Input Offset Voltage	V_{OS}	−55°C	±15V	V _{IN} = 0, A _V = 100		14	mV
3	Input Offset Voltage	V_{OS}	−55°C	±7V	V _{IN} = 0, A _V = 100		15.6	mV
3	Input Offset Voltage	V_{OS}	−55°C	±19V	V _{IN} = 0, A _V = 100		14.8	mV
3	Input Bias Current, +IN	+I _B	−55°C	±15V	V _{IN} = 0		200	pA
3	Input Bias Current, –IN	$-I_B$	−55°C	±15V	V _{IN} = 0		200	pA
3	Input Offset Current	I_{OS}	–55°C	±15V	V _{IN} = 0		100	pA
2	Quiescent Current	I_{Q}	125°C	±15V	V _{IN} =0, A _V =100, R _{CL} =0.2 Ω		60	mA
2	Input Offset Voltage	V_{OS}	125°C	±15V	V _{IN} = 0, A _V = 100		15	mV
2	Input Offset Voltage	V_{OS}	125°C	±7V	V _{IN} = 0, A _V = 100		16.6	mV
2	Input Offset Voltage	V_{OS}	125°C	±19V	V _{IN} = 0, A _V = 100		15.8	mV
2	Input Bias Current, +IN	+I _B	125°C	±15V	V _{IN} = 0		30	nA
2	Input Bias Current, –IN	$-I_B$	125°C	±15V	V _{IN} = 0		30	nA
2	Input Offset Current	I _{OS}	125°C	±15V	V _{IN} = 0		10	nA
4	Output Voltage, I _O = 5A	Vo	25°C	±9V	$R_L = 1 \Omega$, $R_{CL} = 0 \Omega$	5		V
4	Output Voltage, I _O = 36mA	V_{O}	25°C	±19V	R _L = 500 Ω	18		V
4	Output Voltage, I _O = 2A	V_{O}	25°C	±12V	$R_L = 5 \Omega$, $R_{CL} = 0 \Omega$	10		V
4	Current Limits	I_{CL}	25°C	±9V	$R_L = 5 \Omega$, $R_{CL} = 1 \Omega$	0.54	0.86	Α
4	Stability/Noise	E_N	25°C	±15V	R _L =500 Ω, A _V =1, C _L =1.5nF		1	mV
4	Slew Rate	SR	25°C	±18V	R _L = 500 Ω	13	100	V/µs
4	Open Loop Gain	A_{OL}	25°C	±15V	R _L = 500 Ω, F = 10 Hz	86		dB
4	Common Mode Rejection	CMR	25°C	±8.25V	$R_L = 500 \Omega, F = DC,$ $V_{CM} = \pm 2.25 V$	70		dB

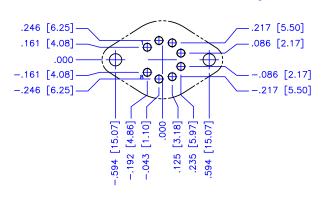


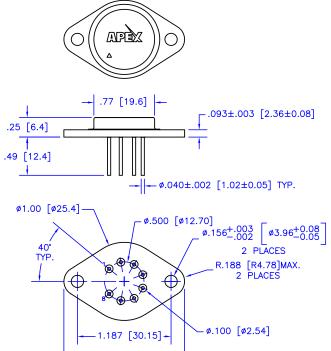
SG	Parameter	Symbol	Temp.	Power	Test Conditions	Min	Max	Units
6	Output Voltage, I _O = 5A	V _O	−55°C	±9V	$R_L = 1 \Omega$, $R_{CL} = 0 \Omega$	5		V
6	Output Voltage, I _O = 36mA	V_{O}	−55°C	±19V	R _L = 500 Ω	18		V
6	Output Voltage, I _O = 2A	V_{O}	−55°C	±12V	$R_L = 5 \Omega$, $R_{CL} = 0 \Omega$	10		V
6	Stability/Noise	E _N	−55°C	±15V	R_L =500 Ω, A_V =1, C_L =1.5nF		1	mV
6	Slew Rate	SR	−55°C	±18V	R _L = 500 Ω	13	100	V/µs
6	Open Loop Gain	A_{OL}	−55°C	±15V	R _L = 500 Ω, F = 10 Hz	86		dB
6	Common Mode Rejection	CMR	−55°C	±8.25V	$R_L = 500 \Omega, F = DC,$ $V_{CM} = \pm 2.25 V$	70		dB
5	Output Voltage, I _O = 3A	V _O	125°C	±7V	$R_L = 1 \Omega$, $R_{CL} = 0 \Omega$	3		v
5	Output Voltage, I _O = 36mA	V_{O}	125°C	±19V	R _L = 500 Ω	18		V
5	Output Voltage, I _O = 2A	V_{O}	125°C	±12V	$R_L = 5 \Omega$, $R_{CL} = 0 \Omega$	10		V
5	Stability/Noise	E _N	125°C	±15V	R _L =500 Ω, A _V =1, C _L =1.5nF		1	mV
5	Slew Rate	SR	125°C	±18V	R _L = 500 Ω	8.5	100	V/µs
5	Open Loop Gain	A_{OL}	125°C	±15V	R _L = 500 Ω, F = 10 Hz	86		dB
5	Common Mode Rejection	CMR	125°C	±8.25V	$R_L = 500 \Omega, F = DC,$ $V_{CM} = \pm 2.25 V$	70		dB

BURN IN CIRCUIT

Figure 22: Burn In Circuit

^{*}These components are used to stabilize device due to poor high frequency characteristics of burn in board.


^{**} Input signals are calculated to result in internal power dissipation of approximately 2.1W at case temperature = 125°C.



PACKAGE STYLE CE

Ordinate dimensions for CAD layout

1.53 [38.9]

NOTES:

- Dimensions are inches & [mm].
 Triangle printed on lid denotes pin 1.
 Header flatness within pin circle is .0005" TIR, max.
- Header flatness between mounting holes is .0015" TIR, max. Standard pin material: Solderable nickel—plated Alloy 52.
- Header material: Nickel-plated cold-rolled steel.
- Welded hermetic package seal Isolation: 500 VDC any pin to case. Package weight: .53 oz [15 g]

NEED TECHNICAL HELP? CONTACT APEX SUPPORT!

For all Apex Microtechnology product questions and inquiries, call toll free 800-546-2739 in North America. For inquiries via email, please contact apex.support@apexanalog.com. International customers can also request support by contacting their local Apex Microtechnology Sales Representative. To find the one nearest to you, go to www.apexanalog.com

IMPORTANT NOTICE

Apex Microtechnology, Inc. has made every effort to insure the accuracy of the content contained in this document. However, the information is subject to change without notice and is provided "AS IS" without warranty of any kind (expressed or implied). Apex Microtechnology reserves the right to make changes without further notice to any specifications or products mentioned herein to improve reliability. This document is the property of Apex Microtechnology and by furnishing this information, Apex Microtechnology grants no license, expressed or implied under any patents, mask work rights, copyrights, trademarks, trade secrets or other intellectual property rights. Apex Microtechnology owns the copyrights associated with the information contained herein and gives consent for copies to be made of the information only for use within your organization with respect to Apex Microtechnology integrated circuits or other products of Apex Microtechnology. This consent does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.

APEX MICROTECHNOLOGY PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN PRODUCTS USED FOR LIFE SUPPORT, AUTOMOTIVE SAFETY, SECURITY DEVICES, OR OTHER CRITICAL APPLICATIONS. PRODUCTS IN SUCH APPLICATIONS ARE UNDERSTOOD TO BE FULLY AT THE CUSTOMER OR THE CUSTOMER'S RISK.

Apex Microtechnology, Apex and Apex Precision Power are trademarks of Apex Microtechnology, Inc. All other corporate names noted herein may be trademarks of their respective holders.